Interaction of Plant-Environment Lab
37.
Jung, J.H.*, Seo, P.J. *, Oh, E. *, and Kim, J. (2023). Temperature perception by plants. Trends Plant Sci. (*equal contribution)
36.
Seo, D., Park, J., Park, J., Hwang, G., Seo, P.J., and Oh, E. (2023). ZTL regulates thermomorphogenesis through TOC1 and PRR5. Plant Cell and Environment 46:1442-1452.
35.
Cho, H., Lee, J., and Oh, E. (2023). Leucine-Rich Repeat Receptor-Like Proteins in Plants: Structure, Function, and Signaling. Journal of Plant Biology 66:99-107.
34.
Jeon, B.W., Kim, J.S., Oh, E., Kang, N.Y., and Kim, J. (2023). RGF1-RGI1 peptide-receptor pair inhibits lateral root development via the MPK6-PUCHI module in Arabidopsis. J Exp Bot. 74:1475-1488.
33.
Ryu, H., Lee, H.N., Ju, J., Park, J.B., Oh, E., Lin, M.Z., and Seong, J. (2022). Combinatorial effects of RhoA and Cdc42 on the actin cytoskeleton revealed by photoswitchable GEFs. Sensors and Actuators B-Chemical 369
32.
Hwang, G.*, Park, J.*, Kim, S., Park, J., Seo, D., and Oh, E. (2021). Overexpression of BBX18 Promotes Thermomorphogenesis Through the PRR5-PIF4 Pathway. Front Plant Sci 12:782352. (*equal contribution)
31.
Kim, S.*, Park, J.*, Jeon, B.W.*, Hwang, G., Kang, N.Y., We, Y., Park, W.Y., Oh, E.#, and Kim, J.# (2021). Chemical control of receptor kinase signaling by rapamycin-induced dimerization. Mol Plant 14:1379-1390. (*equal contribution, #co-corresponding author)
30.
Kim, M.J., Jeon, B.W., Oh, E., Seo, P.J., and Kim, J. (2021). Peptide Signaling during Plant Reproduction. Trends Plant Sci.
29.
Jeon, B.W., Kim, M.J., Pandey, S.K., Oh, E., Seo, P.J., and Kim, J. (2021). Recent advances in peptide signaling during Arabidopsis root development. Journal of experimental botany 72:2889-2902.
28.
Kim, S., Hwang, G., Kim, S., Thi, T.N., Kim, H., Jeong, J., Kim, J., Kim, J., Choi, G., and Oh, E. (2020). The epidermis coordinates thermoresponsive growth through the phyB-PIF4-auxin pathway. Nature communications 11, 1053.
27.
Hwang, G., Kim, S., Cho, J-Y., Paik, I., Kim, J-I., and Oh, E. (2019). Trehalose-6-phosphate signaling regulates thermoresponsive hypocotyl growth in Arabidopsis thaliana. EMBO reports e47828
26.
Pandey, S.K., Lee, H.W., Kim, M.J., Cho, C., Oh, E., and Kim, J. (2018). LBD18 uses a dual mode of a positive feedback loop to regulate ARF expression and transcriptional activity in Arabidopsis. Plant J 95:233-251.
25.
Oh, E.*, Seo, P.*, and Kim, J. (2018) Signaling Peptides and Receptors Coordinating Plant Root Development. Trends Plant Sci (DOI: https://doi.org/10.1016/j.tplants.2017.12.007) (*equal contribution)
24.
Kim, S.*, Hwang, G.*, Lee, S., Zhu, J.Y., Paik, I., Nguyen, T.T., Kim, J., and Oh, E. (2017). High Ambient Temperature Represses Anthocyanin Biosynthesis through Degradation of HY5. Front Plant Sci 8, 1787. (*equal contribution)
기사: 아시아경제등
23.
Hwang, G., Zhu, J.Y., Lee, Y.K., Kim, S., Nguyen, T.T., Kim, J., and Oh, E. (2017). PIF4 Promotes Expression of LNG1 and LNG2 to Induce Thermomorphogenic Growth in Arabidopsis. Front Plant Sci 8, 1320.
기사: 아시아경제등
22.
Zhu, J.Y., Li, Y., Cao, D.M., Yang, H., Oh, E., Bi, Y., Zhu, S., and Wang, Z.Y. (2017). The F-box Protein KIB1 Mediates Brassinosteroid-Induced Inactivation and Degradation of GSK3-like Kinases in Arabidopsis. Mol Cell 66, 648-657 e644.
21.
Zhu, J.Y.*, Oh, E.*,#, Wang T., and Wang, Z.Y.# (2016). TOC1–PIF4 interaction mediates the circadian gating of thermoresponsive growth in Arabidopsis. Nature communications 7, 13692 (*equal contribution;#co-corresponding author)
20.
Choi, H., and Oh, E. (2016). PIF4 Integrates Multiple Environmental and Hormonal Signals for Plant Growth Regulation in Arabidopsis. Mol. Cells http://dx.doi.org/10.14348
19.
Jeong, J., Kim, K., Kim, ME., Kim, HG., Heo, GS., Park, OK., Park, Y., Choi, G. *, and Oh, E. * (2016) Phytochrome and Ethylene Signaling Integration in Arabidopsis Occurs via the Transcriptional Regulation of Genes Co-targeted by PIFs and EIN3. Front. Plant Sci. 7:1055. doi: 10.3389/fpls.2016.01055 (*co-corresponding author)
18.
Chaiwanon, J., Wang, W., Zhu, J.Y., Oh, E., and Wang, Z.Y. (2016). Information Integration and Communication in Plant Growth Regulation. Cell 164, 1257-1268
17.
Oh, E.*, Zhu, J.Y.*, Ryu, H., Hwang, I., and Wang, Z.Y. (2014). TOPLESS mediates brassinosteroid-induced transcriptional repression through interaction with BZR1. Nature communications 5, 4140 (*equal contribution)
16.
Oh, E., Bai, M.Y., Zhu, J.Y., Arenhart, R., Sun, Y., and Wang, Z.Y. (2014). Cell elongation is controlled through a central molecular circuit in Arabidopsis hypocotyls. eLife 3:e03031.
* This article was highlighted in F1000 Prime (http://f1000.com/prime/718421656)
15.
Fan, M, Bai, M.Y, Kim, J., Oh, E., Park, C., Kim, S., and Wang, Z.Y. (2014). HBI1 mediates the tradeoff between growth and PAMP-triggered immunity in Arabidopsis. The Plant Cell 26, 828-841.
14.
Bai, M.Y., Fan, M., Oh, E., and Wang, Z.Y. (2012). A triple helix-loop-helix/basic helix-loop-helix cascade controls cell elongation downstream of multiple hormonal and environmental signaling pathways in Arabidopsis. The Plant cell 24, 4917-4929.
13.
Wang, Z.Y., Bai, M.Y., Oh, E., and Zhu, J.Y. (2012). Brassinosteroid signaling network and regulation of photomorphogenesis. Annual review of genetics 46, 701-724.
12.
Bai, M.Y., Shang, J.X., Oh, E., Fan, M., Bai, Y., Zentella, R., Sun, T.P., Wang, Z.Y. (2012) Brassinosteroid, gibberellin and phytochrome impinge on a common transcription module in Arabidopsis. Nature cell biology (Articles) 14, 810-817.
11.
Oh, E., Zhu, J.Y., Wang, Z.Y. (2012). Interaction between BZR1 and PIF4 integrates brassinosteroid and environmental responses. Nature cell biology (Articles) 14, 802-809.
* This article was highlighted in F1000 Prime (http://f1000.com/prime/717953302)
10.
Hao, Y.*, Oh, E.*, Choi, G., Liang, Z., and Wang, Z.Y. (2012). Interactions between HLH and bHLH factors modulate light-regulated plant development. Molecular plant 5, 688-697. (*equal contribution).
9.
Sun, Y., Fan, X.Y., Cao, D.M., Tang, W., He, K., Zhu, J.Y., He, J.X., Bai, M.Y., Zhu, S., Oh, E., Patil, S., Kim, T.W., Ji, H., Wong, W.H., Rhee, S.Y., and Wang, Z.Y. (2010). Integration of brassinosteroid signal transduction with the transcription network for plant growth regulation in Arabidopsis. Dev Cell 19, 765-777.
8.
Luo, X.M., Lin, W.H., Zhu, S., Zhu, J.Y., Sun, Y., Fan, X.Y., Cheng, M., Hao, Y., Oh, E., Tian, M., Liu, L., Zhang, M., Xie, Q., Chong, K., and Wang, Z.Y. (2010) Integration of light- and brassinosteroid-signaling pathways by a GATA transcription factor in Arabidopsis. Dev Cell 19, 872-883.
7.
Kang, H., Oh, E., Choi, G., and Lee, D. (2010) Genome-wide DNA-binding specificity of PIL5, an Arabidopsis basic Helix-Loop-Helix (bHLH) transcription factor. International journal of data mining and bioinformatics 4, 588-599.
6.
Oh, E., Kang H., Yamaguchi S., Park J., Lee D., Kamiya Y., and Choi, G. (2009) Genome-Wide Analysis of Genes Targeted by PHYTOCHROME INTERACTING FACTOR 3–LIKE5 during Seed Germination in Arabidopsis. Plant Cell. 21, 403-419.
5.
Kim, D. Yamaguchi, S. Lim, S., Oh, E., Park, J., Hanada, A., Kamiya, Y., Choi, G. (2008) SOMNUS, a CCCH-type Zinc Finger Protein in Arabidopsis, Negatively Regulates Light-Dependent Seed Germination Downstream of PIL5. Plant Cell 20, 1260-1277
4.
Oh, E., Yamaguchi, S., Hu, J., Yusuke, J., Jung, B., Paik, I., Lee, H.-S., Sun, T.-p, Kamiya, Y., and Choi, G. (2007) PIL5, a phytochrome-interacting bHLH protein, regulates gibberellin responsiveness by directly binding to the GAI and RGA promoters in Arabidopsis seeds. Plant Cell, 19, 1192-1208.
3.
Oh, E., Yamaguchi, S., Kamiya, Y., Bae, G., Chung, W.-I., Choi, G. (2006) Light activates the degradation of PIL5 protein to promote seed germination through gibberellin in Arabidopsis. Plant J. 47, 124-139.
2.
Oh, E., Kim, J., Park, E., Kim, J-I, Kang, C., and Choi, G. (2004) PIL5, a phytochrome interacting basic helix-loop-helix protein, is a key negative regulator of seed germination in Arabidopsis. Plant Cell 16, 3045-3058.
1.
Park, E., Kim, J., Lee, Y., Shin, J., Oh, E., Chung, W.-I., Liu, J.R., and Choi, G. (2004) Degradation of phytochrome interacting factor 3 in phytochrome-mediated light signaling. Plant Cell Physiol. 45, 968-975